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A simple physical model of the relationship between crystallite size and disorder

for paracrystalline materials is presented, based on the spiral paracrystal and

distortion of the lattice cells. Simulations show that the model leads to

relationships similar to the �� rule. Average crystallite sizes predicted by the

model are in agreement with experimental data and also allow crystallite-size

distributions to be proposed. The model provides a more satisfactory and

complete explanation of this relationship than do current descriptions.

1. Introduction

Disordered crystalline materials are ubiquitous in nature and

technology, and X-ray diffraction is an important means of

analyzing such materials (Welberry, 1985; Stroud & Millane,

1995). Performing such an analysis requires both a statistical

model of the disordered system and a method for calculating

diffraction patterns based on the model. Models of crystalline

disorder are therefore useful in both the description of such

materials and analysis of their diffraction data. X-ray

diffraction analysis shows that the average size of the crys-

talline domains of materials incorporating cumulative, or

paracrystalline, disorder is inversely related to the degree of

disorder in the specimen (this relationship is sometimes called

the `�� rule') (Hosemann & Hindeleh, 1995). We examine

here this relationship in terms of a model based on the spiral

paracrystal.

Disordered crystalline systems can be conveniently

described in terms of lattice disorder and substitution disorder.

Substitution disorder consists of variations in the units

(different atoms or molecules, or different orientations of the

same molecule) located at each site of the crystal lattice.

Lattice disorder consists of variations in the positions of the

lattice sites away from those of an ordered periodic lattice.

Obviously, substitution disorder usually induces some degree

of lattice disorder. We restrict ourselves here to lattice

disorder (without considering the underlying basis for the

disorder). The simplest model of lattice disorder involves

independent distortions of the lattice sites away from those of

a regular periodic lattice. This is referred to as thermal

disorder, disorder of the ®rst kind (Hosemann & Bagchi, 1962)

or uncorrelated disorder (Stroud & Millane, 1996), and,

although it is useful in many situations (Millane & Stroud,

1991; Stroud & Millane, 1995), it does not incorporate the

dependence between distortions at neighboring lattice sites

(i.e. correlated disorder) that are often characteristic, at least

to some degree, of close-packed systems. Correlated disorder

can be detected and characterized experimentally since it

results in X-ray diffraction patterns whose peaks broaden with

increasing scattering angle, whereas for uncorrelated disorder

peak widths are independent of angle (Stroud & Millane,

1996). X-ray diffraction experiments have shown that corre-

lated disorder is present in a variety of disordered crystalline

materials (Alexander, 1969; Hosemann & Hindeleh, 1995;

Welberry & Butler, 1995).

Two principal models have been used to describe disor-

dered crystalline materials, the paracrystal and the

perturbed lattice, both of which incorporate correlated

disorder. The paracrystal model was developed by

Hosemann and co-workers (Hosemann & Bagchi, 1962) and

has been widely used to analyze diffraction from disordered

materials such as polymers, glasses and alloys (Hosemann &

Hindeleh, 1995), and is based on a statistical description in

terms of the lengths and directions of the nearest-neighbor

inter-site vectors in a distorted lattice. The perturbed lattice,

on the other hand, describes a distorted lattice in terms of

the displacements of its sites away from those of a periodic

reference lattice (Welberry et al., 1980; Welberry, 1985;

Stroud & Millane, 1996). Both the paracrystal and the

perturbed lattice models are well de®ned in one dimension

but are well de®ned only under restricted conditions in

more than one dimension (Welberry, 1985). In particular, in

a two- or three-dimensional lattice there are many more cell

edges (with which the random variables of the paracrystal

are associated) than lattice points, implying that conditional

dependencies must be imposed on the distributions

(Hammersley, 1967). The perturbed lattice model circum-

vents this dif®culty by working with the lattice points rather

than the vectors between them, although there are still

dif®culties with devising general two- or three-dimensional

perturbed lattices (Welberry & Carroll, 1982). Our focus

here is on the paracrystal model.
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A number of paracrystal models have been described in two

dimensions. The simplest and most widely used is the ideal

paracrystal (Hosemann & Bagchi, 1962). The two-dimensional

ideal paracrystal has well de®ned statistics and can be

constructed using two one-dimensional paracrystals (in the

plane), each oriented along the primary axes of an underlying

regular two-dimensional lattice. The ideal paracrystal is then

formed by convolving these two one-dimensional paracrystals

with each other. The resulting distorted two-dimensional

lattice is made up of cells that are parallelograms and there-

fore represents a rather restricted, and unrealistic, form of

disorder. A more general and potentially more realistic model

is the spiral paracrystal (Janke & Hosemann, 1978; Hosemann

et al., 1981). The cell shape of the spiral paracrystal is not

restricted to a parallelogram; however, a disadvantage is that

the statistics of the distortions are not well de®ned, and an

analytic expression cannot be obtained for its diffraction. The

spiral paracrystal is an interesting and potentially useful model

however.

A characteristic of paracrystal models is that the variance of

the distance from the origin to a lattice point increases without

bound as the distance from the origin increases. This is of

no particular concern for the one-dimensional paracrystal;

however, for two- or three-dimensional paracrystals, it is

problematic because it can lead to large ¯uctuations in the

lengths of the edges of a single cell, and thence to a very

distorted cell, as the distance from the origin increases. This

problem has been circumvented by proposing that a para-

crystalline domain grows only until the ¯uctuations of the cell

edges reach a certain value (Hosemann, 1975; BaltaÂ -Calleja &

Hosemann, 1980) and no further growth occurs. Since the

variance of the ¯uctuations depends on the degree of disorder

between adjacent sites and the size of the domain, this

requirement gives an implicit relationship between the size of

a paracrystalline domain (crystallite size) and the degree of

disorder within the lattice. Such a relationship has been

observed experimentally from analysis of X-ray diffraction

peak breadths, from which one can estimate average crystallite

size and paracrystalline disorder (Hosemann et al., 1981), and

has been called the `�� rule' (BaltaÂ -Calleja & Hosemann,

1980). Current explanations of the �� rule are based on the

one-dimensional paracrystal and are not particularly con-

vincing (Hosemann, 1975; BaltaÂ -Calleja & Hosemann, 1980;

Hosemann & Hindeleh, 1995). We examine here a more

detailed model of the relationship between crystallite size and

paracrystalline disorder that is based on the spiral paracrystal.

2. The paracrystal and the a� rule

The one-dimensional paracrystal is a sequence of points

distributed along a line that represents a distorted one-

dimensional lattice. The distorted lattice is de®ned only by

speci®cation of the probability density function (usually taken

to be normal) of the distances dj � xj�1 ÿ xj between nearest-

neighbor lattice points, where j indexes the lattice points and xj

is the coordinate of the jth point. The dj are taken to be

independent. Properties of the one-dimensional paracrystal

are described elsewhere (Hosemann & Bagchi, 1962; Mu,

1998; Millane & Eads, 2000). For our purposes, an important

result is that the variance of the distance xj�k ÿ xj between kth

nearest neighbors is equal to k�2, where �2 is the variance of

the distance between ®rst nearest neighbors (Millane & Eads,

2000).

A simple, but not particularly realistic, model of a two-

dimensional paracrystal is a set of parallel one-dimensional

paracrystals. If these one-dimensional paracrystals are in

register at say j � 0, then the variance of the x component of

the distance between the jth lattice points in two adjacent one-

dimensional paracrystals is 2j�2. Since these two points belong

to the same cell in the two-dimensional paracrystal, 2j�2

represents the average degree of distortion of the cell. If we

accept that there is an upper limit to how much a cell can be

distorted, then there is a limit on 2j�2, or on j, i.e. there is an

upper bound on the number of lattice points in the one-

dimensional paracrystals. We denote this upper bound by N,

which represents the average lateral dimensions of a para-

crystalline domain, and we refer to it as the crystallite size. The

above argument implies that N is proportional to 1=�2, and

this is often written as

N � �� 2�ÿ2; �1�

where �� is a constant, and (1) is called the �� rule (BaltaÂ -

Calleja & Hosemann, 1980). The above argument is the

current explanation of the �� rule (Hosemann, 1975; BaltaÂ -

Calleja & Hosemann, 1980; Hosemann & Hindeleh, 1995), but

it is based on a quite unrealistic model of a two-dimensional

paracrystal. Experimental measurements of X-ray diffraction

peak widths allow N and � to be estimated, and results show

that (1) is satis®ed reasonably well for a variety of materials

with �� � 0:15 (BaltaÂ -Calleja & Hosemann, 1980). It is

therefore of interest to see if (1) can be explained on the basis

of a more realistic model of a two-dimensional paracrystal.

The ideal paracrystal is not particularly realistic, however, as

described above, and, since it is constructed from two one-

dimensional paracrystals, ¯uctuations in the shapes of the cells

do not increase as much as they would in a more realistic

paracrystal. We have therefore chosen the spiral paracrystal to

investigate the �� rule.

3. The spiral paracrystal

3.1. Construction

The spiral paracrystal is constructed as follows (Janke &

Hosemann, 1978; Hosemann et al., 1981). We consider a

square (undistorted) lattice and normalize the lattice spacing

to unity. The spiral paracrystal is constructed following a spiral

path, beginning at the origin, as shown in Fig. 1. The lattice

points are divided into two kinds; edge points (open circles in

Fig. 1) and corner points (®lled circles in Fig. 1) on the spiral.

The positions of these two kinds of points are determined

slightly differently. The position of an edge point is deter-

mined relative to its two nearest neighbors in the existing

lattice. Two preliminary points (
 in Fig. 1) for a new edge



point are generated based on each of the two nearest neigh-

bors. The x and y components of the vector from a neighbor to

the corresponding preliminary point are chosen randomly

from two normal distributions of variance �2 (which de®nes

the degree of distortion of the lattice). The mean of one of

these distributions is �1 and the mean of the other is zero, the

actual values used being those that put the preliminary points

in the appropriate positions. Since the two preliminary points

will not in general coincide (Fig. 1), the position of the new

point is chosen such that its distance to each neighbor is equal

to the distance from that neighbor to its preliminary point.

This construction is illustrated in Fig. 1 and can be described

by drawing two circles with centers at each neighbor and with

radii (l1 and l2 in Fig. 1) equal to the distance to the corre-

sponding preliminary point. The new point is then located at

the intersection of the two circles (choosing the appropriate

one of the two intersections). Note that the only purpose of

the preliminary points is to determine the distances l1 and l2.

The corner points have only one nearest neighbor (Fig. 1) and

the single preliminary point, generated as described above, is

used as the new point. The spiral paracrystal is constructed

by sequentially adding edge and corner points, following the

spiral path as shown in Fig. 1.

3.2. Growth termination conditions

Distortions in the spiral paracrystal are cumulative since

each lattice point is added relative to the positions of previous

points. The average distortion of the cells therefore tends to

increase with increasing distance from the origin of the lattice,

and the model can be used to investigate the relationship

between crystallite size and degree of distortion in a more

realistic way than for the one-dimensional paracrystal. We

assume that growth of the spiral paracrystal stops when a new

point to be added leads to a new cell that is too distorted. We

refer to conditions under which growth stops as termination

conditions. Termination of growth de®nes the size of the

paracrystalline domain (crystallite). The average crystallite

size can be calculated by averaging over many realizations of

such lattices.

Janke & Hosemann (1978) and Hosemann et al. (1981)

described a termination condition as follows. With reference

to Fig. 1, the position of a new edge point is not de®ned if the

two circles centered on the two nearest neighbors do not

intersect. They de®ne growth as stopping the ®rst time that

this occurs. Inspection of the ®gure shows that this termination

condition is

l1 � l2 < d or jl1 ÿ l2j> d; �2�
where d is the distance between the two nearest neighbors,

and growth of a lattice terminates the ®rst time that (2) is

satis®ed. Note that d is the length of the diagonal of the cell

that is to be added to the lattice. Equation (2) will tend to be

satis®ed when d takes on extreme (large or small) values.

We also consider here a simpler termination condition

related to the deviation of the length of the diagonal of a new

cell from the nominal value for an undistorted cell (21=2 in our

case). The second termination condition is then de®ned by

jdÿ 21=2j> 21=2�; �3�
i.e. growth stops when the length of the diagonal of a cell

deviates from its nominal value by a fraction �, which can be

treated as a parameter. In this case, condition (2) is ignored

when building the lattice by repeatedly generating preliminary

points if necessary until a valid new point is obtained.

4. Simulations

Janke & Hosemann (1978) and Hosemann et al. (1981)

generated a spiral paracrystal using the termination condition

(2) described above and noted that its size satis®ed the �� rule.

However, this was a single simulation for a single value of �
and so does not provide a de®nitive result. Our objective here
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Figure 1
Construction of the spiral paracrystal (see text). Edge points (open
circles), corner points (®lled circles) and preliminary edge points (
).

Figure 2
Examples of simulated spiral paracrystals for (a) � � 0:05 and (b)
� � 0:10.
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is to examine the crystallite size±disorder relationship for a

range of values of � and with appropriate averaging over an

ensemble of spiral paracrystals.

Spiral paracrystals were generated as described above for

values of � between 0.01 and 0.2. Examples of two such lattices

are shown in Fig. 2. Both (2) and (3) were used as termination

conditions. For each value of �, 5000 lattices were generated

and the crystallite sizes, denoted by N and de®ned as the

square root of the number of points in the lattice, were aver-

aged over all the lattices. The average size so obtained is

denoted by �N. The 5000 lattices were also divided into 10

groups of 500, �N calculated for each group, and the standard

deviation of �N calculated. The standard deviation of �N was

less than 2% in all cases. Plots of �N versus � for the two

termination conditions are shown in Fig. 3. The �� rule for

�� � 0:15, and the data in Fig. 4 of Hosemann et al. (1981) are

also shown in the ®gure. The value � � 0:40 in (3) was chosen

to minimize the r.m.s. difference between �N and the data in

Fig. 3.

Inspection of Fig. 3 shows that the spiral paracrystal models

with both termination conditions provide reasonable ®ts to the

data and are similar to the �� rule. The termination condition

(2) appears to provide an upper bound to �N, rather than

average values over the data, however. Termination condition

(3) provides a good overall ®t to the data. Fitting power-law

relationships between �N and � to the curves in Fig. 3 based on

the spiral paracrystal gives

�N � 1:0� 0:11�ÿ1:8 �4�

for termination condition (2),

�N � 1:4� 0:12�ÿ1:6 �5�

for termination condition (3) with � � 0:40. The ®ts of (4) and

(5) to the simulations are essentially perfect. Note the simi-

larity of (4) and (5). These relationships are similar to the ��

rule (1). However, a disadvantage of the �� rule is that it

predicts non-physical values �N< 1 for large values of �.

Relationships (4) and (5) satisfy N> 1 however.

The simulations described above can be used to calculate

the distribution of crystallite sizes as a function of �. The

distributions were calculated [based on (3) with � � 0:40] and

are shown, normalized by �N, in Fig. 4(a) for four values of �.

Inspection of the ®gure shows that the distributions of crys-

tallite sizes are approximately normal, except for large � and

broaden (when normalized to �N) with increasing �. The

standard deviations of the distributions, denoted by �, were

also calculated and are shown in Fig. 4(b) (also normalized by
�N). The standard deviation of N= �N increases with �, i.e. there

is a wider variety of relative crystallite sizes (larger �= �N) for

larger disorder, as might be expected.

5. Conclusions

Previous theoretical explanations of the experimentally

observed inverse relationship between crystallite size and

degree of disorder in paracrystalline materials have been

either unsatisfactory or incomplete. A more complete quan-

titative explanation based on the two-dimensional spiral

paracrystal has been described and provides a more satisfac-

Figure 3
Average crystallite size, �N, versus � for the spiral paracrystal with
termination condition (2) (dashed line), termination condition (3) with
� � 0:40 (solid line), and the �� rule with �� � 0:15 (dot-dashed line).
Experimental data from Fig. 4 of Hosemann et al. (1981) are shown by the
circles.

Figure 4
(a) Crystallite-size distributions (normalized to �N) and (b) their standard
deviations as a function of �.



tory explanation of this relationship. The model leads to

relationships between mean crystallite size and disorder that

are similar to the �� rule and provide a reasonably good ®t to

observed data. The model also allows one to propose crys-

tallite-size distributions as a function of disorder.
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